Question Paper Code : X 20769

Reg. No.:

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fifth/Sixth Semester Information Technology IT 6502 – DIGITAL SIGNAL PROCESSING (Common to : Computer Science and Engineering/Mechatronics Engineering) (Regulations 2013)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

(6)

- 1. A signal $x(t) = \sin(5\pi t)$ is sampled and what is the minimum sampling frequency is needed to reconstruct the signal without aliasing.
- 2. Find the system (transfer) function of given difference equation. Using z transform y(n) 0.5 y(n 1) = x (n).
- 3. Find the DFT of unit impulse sequence.
- 4. Why FFT is needed ?
- 5. What does "frequency warping" mean?
- 6. Given the transfer function of LPF, $H(s) = \frac{1}{s+1}$, find the Transfer function of HPF having a cutoff frequency of 10 rad/sec.
- 7. List the properties of FIR filter.
- 8. Mention the desirable characteristics of the windows.
- 9. Compare fixed point and floating point representations.
- 10. Define dead band.

PART – B (5×13=65 Marks)

11. a) Check whether the following systems are static or dynamic, linear or non-linear, time variant or invariant, causal or non-causal?

i)
$$y(n) = x(n) + x(n-1)$$
 (7)

ii)
$$y(n) = nx^2(n)$$
. (OR)

b) Determine the system function and impulse response of the system described by the difference equation y(n) = 2y(n-1) - y(n-2) + x(n) + 3x(n-1). (13)

X 20769			
12.	a)	Explain different filtering methods based on DFT and FFT. (OR)	13)
	b)	Determine the response of LTI system when input sequence $x(n) = \{-1, 1, 2, 1\}$ and impulse response $h(n) = \{-1, 1, -1, 1\}$ by radix-2 DIT FFT.	13)
13.	a)	Compute a Chebyshev analog lowpass filter transfer function by using bilinear transformation technique for the following specification ($T = 1$ sec):	
		$0.8 \le H(e^{j\omega}) \le 1, \ 0 \le \omega \le 0.2\pi$	10)
		$ H(e^{\omega}) \le 0.2, 0.6 \pi \le \omega \le \pi.$ (OR)	13)
	b)	Design a Butterworth digital lowpass filter using impulse invariant technique with $T = 1$ sec satisfying the following specification :	;
		$0.8 \le \mathbf{H}(\mathbf{e}^{\mathrm{j}\omega}) \le 1 0 \le \omega \le 0.25\pi$	
		$ H(e^{\omega}) \le 0.15 0.65 \ \pi \le \omega \le \pi$ (13)
14.	a)	Design a HPF with the following frequency response :	
		$H_{d}(e^{j\omega}) = 1 \text{ for } \pi/4 \le \omega \pi$	
		$= 0 \text{ for } \omega \le \pi/4$	
		of length $N = 11$ using Hanning window. (13)
		(OR)	
	b)	Using frequency sampling method design a bandpass filter with the following	
		upper cut off frequency 3000 Hz. (13)
15.	a)	Derive the steady state output noise power and find the steady state variance of the noise in the output due to quantization of input for the first order filter $y(n) = ay(n-1) + x(n)$.	13)
		(OR)	
	b)	State the need for Scaling and derive the scaling factor for a second order IIR filter.	13)
		PART – C (1×15=15 Mar	ks)
16.	a)	Find the 8 Point DFT of $x(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ using DIF – FFT algorithm and also sketch Magnitude and phase response. (15)
		(OR)	

b) Explain the characteristics of limit cycle oscillation represented to the system described by y(n) = 0.95 y (n - 1) + x(n). Determine the dead band of the filter. (15)